Role of matrix protein in cytopathogenesis of vesicular stomatitis virus.
نویسندگان
چکیده
The matrix (M) protein of vesicular stomatitis virus (VSV) plays an important structural role in viral assembly, and it also has a regulatory role in viral transcription. We demonstrate here that the M protein has an additional function. It causes visible cytopathic effects (CPE), as evidenced by the typical rounding of polygonal cells after VSV infection. We have analyzed a temperature-sensitive mutant of the M protein of VSV (tsG33) which is defective in viral assembly and which fails to cause morphological changes of the cells after infection at the nonpermissive temperature (40 degrees C). Interestingly, this defect in viral assembly as well as the CPE were reversible. Microinjection of antisense oligonucleotides which specifically inhibit M protein translation also inhibited the occurrence of CPE. Most importantly, when cells were transfected with a cDNA encoding the temperature-sensitive M protein of tsG33, no CPE was observed at the nonpermissive temperature. However, when these cells were shifted to the permissive temperature (32 degrees C), they rounded up and detached from the dish. These results demonstrate that M protein in the absence of the other viral proteins causes rounding of the cells, probably through a disorganization of the cytoskeleton. The absence of CPE at the nonpermissive temperature is correlated with an abnormal dotted staining pattern of M in these cells, suggesting that the mutant M protein may self-aggregate or associate with membranes rather than interact with cytoskeletal elements.
منابع مشابه
Cytopathogenesis of Vesicular Stomatitis Virus Is Regulated by the PSAP Motif of M Protein in a Species-Dependent Manner
Vesicular stomatitis virus (VSV) is an important vector-borne pathogen of bovine and equine species, causing a reportable vesicular disease. The matrix (M) protein of VSV is multifunctional and plays a key role in cytopathogenesis, apoptosis, host protein shut-off, and virion assembly/budding. Our previous findings indicated that mutations of residues flanking the (37)PSAP(40) motif within the ...
متن کاملIdentification of two additional translation products from the matrix (M) gene that contribute to vesicular stomatitis virus cytopathology.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nu...
متن کاملIn silico and in vitro studies of cytotoxic activity of different peptides derived from vesicular stomatitis virus G protein
Objective(s):This study aims at exploring cytotoxic activity of different peptides derived from VSVG protein against MCF-7 and MDA-MB-231 breast cancer cell lines and human embryonic kidney normal cell (HEK 293). Materials and Methods: The ANTICP web server was used to predict anticancer peptides. The cytotoxic activity of peptides with high score (P26, P7) and low score (P19) was examined b...
متن کاملRole of residues 121 to 124 of vesicular stomatitis virus matrix protein in virus assembly and virus-host interaction.
The recent solution of the crystal structure of a fragment of the vesicular stomatitis virus matrix (M) protein suggested that amino acids 121 to 124, located on a solvent-exposed loop of the protein, are important for M protein self-association and association with membranes. These residues were mutated from the hydrophobic AVLA sequence to the polar sequence DKQQ. Expression and purification ...
متن کاملThe NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection.
Inflammasomes are cytosolic protein complexes that regulate caspase-1 activation and the secretion of interleukin-1β (IL-1β) and IL-18. Several different inflammasome complexes have been identified, but the NLRP3 inflammasome is particularly notable because of its central role in diseases of inflammation. Recent work has demonstrated an essential role for the NLRP3 inflammasome in host defense ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 64 4 شماره
صفحات -
تاریخ انتشار 1990